The future of grape breeding: theory and technology

Zhenchang Liang

ZL249@ibcas.ac.cn

Insitute of Botany, Chinese Academy of Sciences

XII GBG, Bordeaux, 07/17/2018

Challenges

THE KEY TO THE CLIMATE

Variations in average sea surface temperatures (SSTs) underlie much of the year-to-year variation in atmospheric temperature and rainfall. In this satellite imagery of SST anomalies, taken during January 1998, you can see the very strong El Niño that helped make it one of the warmest years on record

The ways to deal with challenges

The problem....

High cost, e.g. buried and dug fee accounted for 50% total cost (-2,000\$/Ha in north of China)
 Low quality, decrease yield, berry quality *et. al*.
 Food safety, pesticide residue

The improvement of crop system can not fundamentally address these problem.

Harmonious growth and good phenotypes

To elucidate grape genetic diversity, we are building a grape data platform

www.grapeworld.org

			发送图片到手				Ot 2T	her
 重点实验室简介 >)更多 北京市葡萄科学与酿酒技术重点 实验室简介 	学生产应用 >>更多 ・目前全球主要葡萄栽培品种介绍 ・葡萄主要的栽培措施及病虫害防	 ・ 新商科研平台 ・ ・ ・	2. 共享情 > 实	研販务 3.3.2.2.3.2.3.2.3.3.3.3.3.3.3.3.3.3.3.3))更多))更多 及数据分享	RN	A-seq/ch	Genomic 5T
 > 北京市葡萄科学与酿酒技术重点 实验室主要成员简介 > 北京市葡萄科学与酿酒技术重点 	治 世界葡萄酒生产及进出口状况 基于大数据的葡萄生产与预测 	 葡萄种质资源平台 葡萄种质资源转录组信息 葡萄基因组注释及信息指 葡萄进化分析平台 	■平台 > 第 密掘平台 培 > 学	研服务平台(对外) 验室对外相关技术; 训 :术会议、专题讲座; 知	和平台应用	14	Г	
 实验室发展历史 > 北京市葡萄科学与酿酒技术重点 实验室的主要研究发展方向 			× x	件下载				

The English version is on the way.....

Data 1: RNA-seq of core collection (51 accessions, 1.5T)

Stages	Species	color	Seedless	Purpose	Sugar	Acids	Berry.Size	Flavour
Young Berry	8 species	Colored	Seeded	Table	High	High	Big	High
Veraison	5 hybrids	White	Seedless	Wine	Low	Low	Small	Low
				Rootstoc				
Maturation	1 unknown			k				

Data 2: Genome Data (V. amurensis)

Why is V. amurensis?

- Originate in North-east Asia
 High anti-cold and disease
 Close to V. vinifera
- **≻**Used in production

Hiseq2500 (200X)+Pacbio (30X)+Bionano (>150KB, 200G)+HiC (100X)

Data 3: Resequencing (472 accessions, Coverage >15X)

wild Eurasian species **WEU**(Group-1), domesticated grapevine cultivars **CEU** (Group-2), interspecific-hybrid grapevine cultivars were classified into two separate clusters: Group-3 and Group-5 **HYB** wild North American *Vitis* species **WNA** (Group-4) wild East Asian *Vitis* species **WEA** (Group-6),

Data 4: High density genetic maps

- Methods: RADseq or GBS
- High quality SNP: >2000

Data 5: Berry traits (>200 accessions)

Outer of berry:

shape, color, weight;

Metabolites:

sugar, acids, volatiles,

polyphenols, ascorbic acid, animo acids etc.

Including: variety, data, people, time, position, methods

Data 6: Botanical traits

Phenology:

growth potential、budding、 flowering、fruit setting、 verasion、ripening etc;

Anti stress:

cold、heat、drought、 disease etc.

Data 7: Wine industry

Data 8: Public data

142 plant genome including 4 grape genome 1992 grape RNA-seq (A grape transcriptome database <u>http://grapeworld.org/gt/</u>)

136 grape microRNA24 grape DNA methlylationGrape industry data

Developing many new DNA markers/candidate genes linked with traits. e.g.

Many candidate genes linked with onset of ripening

Comparative transcriptomics analysis (GH *VS* Veraision): 2077 DEGs in 80% accessions, 1482 down-regulated, 595 up regulated

325 HDEGs (>3fold) 147 downregulated (related to growth and development), 88 up-regulated (related to metabolism and stress responses)

Expression association study (EAS)

The 18 candidate genes were identified, 13 were downregulated and 5 of them were related cell wall modification The eGWAS results showed that there were 5 loci related to the flowering-to-maturity duration. These higheffect loci were located in 5 genes

The ethylene sigal pathway showed significantly upregulated, and ethephon could color berries earlier.

GWAS results with exome SNPs and the flowering-to-maturity

The transient over-expression of *VvACO* in strawberry (non-climacteric) and tomato (climacteric) accelerated the onset of ripening.

Mapping QTL+RNA-seq

99.2

- 107

population: 150

	BF	3-34	Total
Linkage group	19	19	
Map length	1799.1 CM	1974.6 CM	
SNP	2769	1921	4690
Density	0.65	1	

The number of QTLs in the genetic maps.

Compound	3-34	Beifeng	Total
Limetol	10	6	16
.betaMyrcene	13	3	16
D-Limonene	8	2	10
Ocimene	10	4	14
Linalool oxide	3	4	7
Terpinolene	9	3	12
Linalool	11	7	18
Rose oxide	17	4	21
Alloocimene	16	5	21
Hotrienol	2	nd	2
Nerol oxide	14	4	18
4-Terpinenol	1	nd	1
(E)-Pyranoid linalool oxide	1	3	4
α-Terpineol	16	6	22
Nerol	4	2	6
Geraniol	12	4	16
Geranial	5	nd.	5

Among these QTLs, 73 stable QTL related to monoterpenes were identified in two successive years.

	Gene ID	Chromosome	Position	Functional Annotation
	GSVIVG01010274001	chr1	18696200-18697377	defensin Ec-AMP-D2
	GSVIVG01019878001	chr2	4150396-4152247	NDP-L-rhamnose synthase
	GSVIVG01022723001	chr2	15587960-15590452	Nitrilase 4B
	GSVIVG01019873001	chr2	4110678-4113795	primary amine oxidase
	GSVIVG01019849001	chr2	3822829-3825957	Osmotin
	GSVIVG01018921001	chr4	18625063-18629091	dolichyldiphosphatase 1-like
	GSVIVG01018767001	chr4	20090879-20092677	thaumatin-like protein 1b
QTL genes	GSVIVG01017899001	chr5	4484043-4487627	aluminum induced protein with YGL and LRDR motif-like
	GSVIVG01017796001	chr5	3549320-3551930	UPF0497 family
(3482)	GSVIVG01017718001	chr5	2877561-2880014	unknown
	GSVIVG01017757001	chr5	3181985-3182859	protein RALF-like 33
	GSVIVG01031486001	chr6	18028142-18029883	Xyloglucan endotransglucosylase/hydrolase 32
32	GSVIVG01031418001	chr6	18818715-18822205	UDP-D-apiose/UDP-D-xylose synthase 2
	GSVIVG01025223001	chr6	3073920-3076705	Kiwellin Ripening-related protein grip22
	GSVIVG01024994001	chr6	5418080-5420685	heat shock cognate 70 kDa protein 2-like
	GSVIVG01037249001	chr6	16912617-16920281	magnesium transporter NIPA6
	GSVIVG01024970001	chr6	5615788-5616779	GTP-binding protein OBGM
PNA-sea	GSVIVG01037417001	chr6	14131230-14133129	calmodulin-7
	GSVIVG01015991001	chr9	16881846-16883252	Co-chaperone-curved DNA binding protein A
RNA-seq (742)	GSVIVG01017125001	chr9	4405819-4406667	thionin-like protein 2
	GSVIVG01022901001	chr12	18178938-18179555	glutelin type-A 3-like
	GSVIVG01020584001	chr12	4004274-4005147	Ethylene-responsive transcription factor 9
	GSVIVG01023236001	chr12	20811694-20814701	transcript variant X3
	GSVIVG01020678001	chr12	3173093-3175003	trichome birefringence-like 39
	GSVIVG01020658001	chr12	3365914-3367561	basic leucine zipper 61
	GSVIVG01033020001	chr14	25100075-25101021	UPF0497 family
	GSVIVG01018579001	chr16	12961189-12962599	acyl-coenzyme A oxidase 3
OTE 26 Construction games 1	GSVIVG01028882001	chr16	17827579-17830662	protein TRANSPARENT TESTA 12-like
2TF, 26 Construction genes, 4	GSVIVG01008344001	chr17	3086514-3092680	unknown
unknown	GSVIVG01029329001	chr17	14425929-14430764	metal-nicotianamine transporter YSL7
	GSVIVG01008617001	chr17	369676-378037	unknown
	GSVIVG01036848001	chr18	18007180-18008566	unknown

qRT-PCR assay results of the relative expression profiles of *bZIP61*. The y-axis indicates the relative folds of gene expression compared with Beifeng, which has low content of monoterpenes and whose expression was standardized as 1; numbers on the x-axis represents various cultivars: A, Beifeng (one of parents in the F1 population, low content of monoterpenes); B, Jingzaojing (low monoterpenes); C, F1 progeny no. 243 (low content of monoterpenes); D, Xiangfei (high content of monotedrpenes); E, Riesling Italian (high content of monoterpenes); and F, F1 progeny no. 360 (high content of monoterpene).

Expression of *bZIP61* in inflorescences of the empty vector (without *bZIP61* sequence, EV) and transgenic callus in different lines(B3,B5 and B6),the y-axis indicates the relative folds of gene expression compared with EV, which expression was standardized as 1.Error bars indicate SD of three biological replicates.

Monoterpenes(Nerol,D-limonene,beta.-myrcene,geranial and geraniol) and sesquiterpene(caryophyllene) content(µg kg-1 FW) from the empty vector (without *bZIP61* sequence, EV) and transgenic callus(from *Vitis amurensis* petiole) in different lines (B3,B5 and B6).EV Error bars indicate SD of nine biological replicates.B3 and B5 Error bars indicate SD of six biological replicates.B6 Error bars indicate SD of seven biological replicates.The mark "**" represent P<0.01,very significant difference.

Grape cultivars in industry

Rank	Cultivar	Color	Species
1	Cabernet Sauvignon	Red	V. vinifera
2	Merlot	Red	V. vinifera
3	Airen	White	V. vinifera
4	Tempranillo	Red	V. vinifera
5	Chardonnay	White	V. vinifera
6	Syrah	Red	V. vinifera
7	Garnacha Tina	Red	V. vinifera
8	Trebbiano Toscano	White	V. vinifera
9	Sauvignon Blanc	White	V. vinifera
10	Pinot Noir	Red	V. vinifera

The grape breeding status in last 20 years

	Total	Vinifera	Vinifer/La brusca	Other speices	Ratio of V/LV
World	212	123	51	38	82%
China	75	39	21	15	80%

В

Figure 1 the expression analysis of the 51 accessions in three phase. A) The correlation analysis between the 153 samples. B) The expression level of the chromosome 1 in green hard. The sample position from the outside in is L01- L23, V01-V10, W01-W18, the red area means high expression level and the blue area means low expression level. The expression level were normalized by log2(FPKM/mean FPKM). C) The expression level of the chromosome 1 in veraison phase. D) The expression level of the chromosome 1 in ripening phase.

Transcripts assembling

The abundance, distribution, and similarity of uni-genes in 51 accessions. A) Number of uni-genes in all the 51 accessions. B) Similarity rate of the uni-genes among all the 51 accessions. Each block means the similarity uni-genes proportion of the whole uni-genens in this accession. C) distribution of universal and specific genes, the red color means they can find similarity uni-genes in most accessions, the blue one indicate only one or several accession contain these uni-genes.

The domestication related genes in the grape berry. A) Distribution and selection of the domestication genes on the whole genome. The purple bar is the expression level of cultivated grape, the green bar is the wild grape. The red is wine grape and the orange is the table grape. The red point is the genes which FDR < 0.05, and the blue ones is FDR >=0.05. From outside in is the GH, V and R phase. B) Some important genes during the domestication. C) The sugar and acid content in each groups. The red box-plot is the acid content in the berry, the first one is tartaric acid. and the second is malic acid. The third box-plot is the total acid content. The purple box-plot is the sugar content in the ripening berry (glucose, fructose and total sugar).

Figure 4 the behavior of the hybrid types. A-C) The selection of the different genes in GH (A) V (B) and R (C) and the cluster of these genes in each accession. The red points is the amid genes $(|\log 2(\text{change fold})| > 1).$ D) The acid content of each group. The three vioplot is tartaric acid, malic acid and total acid. E) The sugar content of each group. The three vioplot is glucose, fructose and total sugar.

'Beicun'

'Beimei'

'Beihong'

'Beiquan'

`Beixi′

'Beixin'

		Brix	Berry weight (g))	Anti-cold
F1	Beihong	25.2	1.57	Strong
F1	Beimei	23.3	2.66	Strong
F1	Beichun	20.1	2.62	Strong
F1	Beixin	23.4	3.62	Strong
F1	Beixi	23.8	2.27	Strong
F2	Beiquan	18.0	4.52	Mid

Technique

Methods for grapevine breeding

- Cross breeding
- Bud mutation
- Radiation induced mutation breeding
- Seedling selection
- Precision breeding

Grape flowers (top) and emasculation of clusters (below)

Burger P. et al. 2009
Regeneration of grapevine

Organogenesis pathway

Adventitious bud formation in leaf explants was first reported by Favre in 1976, and was further applied in several grapevine species, including wine grapes, table grapes and rootstocks.

Explants

- Leaf primordial fragments
- lamina or petioles
- hypocotyls of somatic embryos
- callus

Regeneration of grapevine

Embryogenesis pathway

Grapevine regeneration via embryogenesis pathway *in vitro* is a well established procedure as early as in 1976 (Mullins and Srinivasan).

Explants

- Somatic callus
- Somatic suspension cells
- Somatic embryos

Genetic transformation

- Agrobacterium tumefaciens-mediated method
 - Embryogenic callus
 - Embryogenic suspension cells
 - Leaf discs

The Agrobacterium tumefaciensmediated transformation system is the predominant technology based on the ability of Agrobacterium on insert genes into plant cells.

Genetic transformation with new techniques

In 1990, Mullins et al. obtained transformed plants overexpressing *GUS* gene

In 2009, Hanania et al. silenced the ubiquitin extension *S19a* gene by using RNAi

In 2016, Ren et al. knocked out *IdnDH* gene in Chardonnay via CRISPR/Cas9

Applications of genetic transformation in grapevine

The procedure of genetic transformation via embryogenesis

The timing of genetic transformation via embryogenesis

Directly induction of embryos without selection

a, vector construct with *GUS* marker gene; b, GUS staining of cells after Agrobacterium co-culture; c, Embryos induction from grape cells

CRISPR/Cas9 has been the predominant method for genome editing.

Accomplishments of genome editing in grape with CRISPR/Cas9

Plant material	Delivery method	Target gene	Modificat ion type	Effect	Off- target	Reference
Protoplasts	PEG; transient expression	MLO-7	Gene knockout		ND	Malnoy et al. 2016
Embryogenic cells	Agrobacterium infection; stable integration	IdnDH	Gene knockout	Reduction in tartaric acid content	No	Ren et al. 2016
Proembryonal masses (PEM)	Agrobacterium infection; stable integration	WRKY52	Gene knockout	Increased resistance to Botrytis cinerea	No	Wang et al. 2017
Embryonic calli	Agrobacterium infection; stable integration	PDS	Gene knockout	Albino phenotype	No	Nakajima et al. 2017

Many factors have been found to have an impact on CRISPR/Cas9 system.

sgRNA/Cas9 expression level; PAM sequence; Genetic background

• • •

The efficiency of CRCRISPR/Cas9-mediated targeted mutagenesis in grape

Four GC content of sgRNAs were designed to target exon sites of the Vitis vinifera phytoene desaturase (*VvPDS*) gene two varieties 'Chardonnay' and '41B' suspension cells were used as the transgenic cell mass.

	SEQUENCE	GC Content
gRNA1	GGGGAATTCAGCCGATTTGA	50%
gRNA2	GCCAGCAATGCTCGGAGGAC	65%
gRNA3	TTTGTCTACTGCAAAATATT	25%
gRNA4	TCAATTCAGATATGTTTCTG	30%

The sequencing results:

The sequencin g results shows that four GC content of sgRNAs all worked in the transgenic cell mass.

cing results.				
gRNA	A1: GGGG	AATTCAGCCGATT	TGA (GC Content: 50%)	
WT AGGAACATTCTATGATATTTCCAAAGCCAAGCAA	GCCAGGGG	AATTCAGCCGATT	TGATTTCCCTGAAGTCCTTC	CTGCACCCTTAAAT <mark>G</mark>
Linel aggaa cattct atgatatttg caaagccaagcaa	GCCAGGGGA	ATTCAACCGATT	TGATTTCCCTGAAGTCCTTC	CTGCAGCCTTAAATG
Line2 aggaacattctatgatatttgcaatgccaagcaa	GCCAGGGTGA	ATTCAGCCGATI	TGATTTCCCTGAAGTCCTTC	CTGCACCCTTAAATG
Line3 aggaacattctatgatatttcaaagccaagcaa	GCCAGGGCATTAG	CAATATTCAGCCGATT	TGATTTCCCTGAAGTCCTTC	CTGCACCCTTAAATG
Line4 aggaacattctatgatattgatttgatttccct				
Line5aggaacattctatgatatttgcaaagccaagcaa				
Line6 aggaacattctatgatatttgcaatgccaagcaa	GCCAGGG	ATTCAGCCGATI	TGATTTCCCTGAAGTCCTTC	CTGCACCCTTAAATG
Line7 AGGAACATTCTATGATATTTGA	••••••	••••••		
Line8 AGGAACATTCTATGATATTTGC				AAAG
Line9 AGGAACATTCTATGAATTCAGCC	· · · · · · · · · · · · · · · · · · ·	ATT	TGATTTCCCTGAAGTCCTTC	CTGCACCCTTAAATC
Line10 AGGAATTCTCTCGATTTCA			TTTCCCTGAAGTCCTTC	CIGCACCCIIAGAI
gRNA2:	GCCAGCAATGCTC	GGAGGAC (GC Conte	ent:65%)	
WT IGCTGACTTGGCCGGAGAAAATCA.AGTTTGCTATTGCACTT				TGTTAAAGACTGGATG.
Line1 gctgactggccggagaaaatca.agtttgctattgcactt				
Line2 (GCTGACTTGGCCGGAGAAAATCA.AGTTTGCTATTGCACTT				
Line3 GCTGACTTGGCCGGAGAAAATCA.AGTTTGGTATTGGATTT				
			.TCGGAGCACAGGATGGTTTAA	CTGTTAAAGACTGGATG.
			ATGGTTTAA	
Line7 IGCTGACTIGGCCGGAGAAAATCA.AGTITGCTATTGACTT				
Line8 GCTGACTTGGCCGGAGAAAATCA.AGTTTGCTGACAGGCTT	ATCTT . GAAGCACA	GG	ATGGTTTAA	TGTTAAAGACTGGATG
Line9 GCTGACTTGGCCGGAGAAATTCACAAGCTGCTCAGGCTT	ATCTT.GAAGCACA	3 <mark>6</mark>	ATGGTTTAAG	TGTTAAAGACTGGATG.
Line10 gctgac	A <mark>TG</mark>	. <mark>.</mark>	. TTGAAGCACAGGATGGTTTAAG	TGTTAAAGACTGGATG.
DUAD TTTCTCTACTCCAAAAT ATT (CC Comt				
gRNA3:TTTGTCTACTGCAAAAT-ATT(GC Cont	Construction and the second second			
WT GTTTGTCTACTGCAAAAT.ATTTGGCAGATC				
Line1 GTTTGTCTACTCCAAAATTATTTGGCAGATC	SCAGGTCACA2	AGCCTATATTGT	GGAAGCAAGAGATGT	TTAGGTGGAAAG
Line2 <mark>GTTTGTATATAGAAAAAT</mark> .ATTTGGCAGATO	GCAGGTCACA1	AGCGTATATTGT <mark>T</mark>	GGAAGCAAGAGATGT	TTAGGTGGAAAG
Line3 GTTTGTCTACTGCAAAATTTGGCAGATC	SCAGGTCAC AA	AGCCTATATTGTT	GGAAGCAAGAGATGT	TTAGGTGGAAAG
Line4 GGTTGTTTTTCTGCCAAAATATTTGGCAGATC	GCAGGTCACA	AGCCTATATTGTT	GGAAGCAAGAGATGT	TTAGGTGGAAAG
Line5 GTTTGTCTACTGCAAGAT . ATTTGGCAAATC	TGGGTCAGA	AGGCTATATTGTA	GGAAGCAAGAGATGT	TTAGGTGGAAAG
Line6 GTTTGTCTACTGCAAAATAATTGGCAGATC	GCAGGTCACA	AGCCTATATTGTT	GGAAGCAAGAGATGT	TTAGGTGGAAAG
Line7 GTTTGTCTACTGCAATTTGGCAGATC				
Line8 GITTGTCTACTGCAA.				
			GGAAGCAAGAGATGT	
			GGAAGCAAGAGATGT	
LINEIO				e ano o a commo

gRNA4:TCAATTCAGATATGT		
WT GGTGAAAT.GACTCAATTCAGATATGT	TTCTGCGGTGAACTTGAGCTGC	CCAAAGTAATATA
Linel GGTGAAAT. GACTCAATTCAGATATGTACCTGGATATAATAAACTTTAGTAATATAATAA		
Line2 <mark>GGTGAAAT.GACTCAAT</mark> ATTTCTGGGGA		
Line3 <mark>GGTGAAAT.GACTCAAT</mark> TCAAATA		
Line4 GGTGAAAT.GACTCAAT		
Line5 <mark>GGTGAAAT.GACTCAAT</mark>	TCTCTGCGGTGAACTTGAGCTGC	CCAAAGTAATATA
Line6 GGTGAAAT. GCCTCTTGA	.CGTTTCTGCGGTGAACTTGAGCTG0	CCAAAG <mark>TAATATA</mark>
Line7GGTGAAATAGGETTAATA	.TGTTTCTGCGGTGAACTTGAGCTGC	CCAAAG <mark>TAATATA</mark>
Line ⁷ GGTCCCTTTTAGTC	.TGTTTCTGCGGTGAACTTGAGCTGC	CCAAAGTAATATA

The GC content of guideRNA

	GC content(%)	Indel(%)
gRNA1	50%	34%
gRNA2	65%	45%
gRNA3	25%	10%
gRNA4	30%	15%

• T7EI assay and PCR/RE assay showed that the most efficient one is the 65% GC content sgRNA, followed by 50%. The indel mutations were detected in transgenic CM with the 25% and 30% GC content sgRNA respectively but the efficiency of them is much lower than others.

The variety of the suspension cells for transformation

Two high efficient gRNA were used to detect the efficiency of two varieties ('Chardonnay' and '41B') suspension cells (red arrowheads indicate cleaved mutated bands).

The variety of the suspension cells for transformation

	Char-Indel(%)	41B-Indel(%)
gRNA1	27%	34%
gRNA2	40%	45%

• By comparing the efficiency of CRCRISPR/Cas9 system in 'Chardonnay' and '41B' transgenic CM and we found that CRCRISPR/Cas9 system worked more efficiently in '41B'

suspension cells.

The expression level of SpCas9

The results of qPCR showed that the CRISPR-Cas9 system which had the higher editing efficient expressed higher level of *SpCas9*.

Data from grape genome browser (GRAPE-CRISPR)

	http://biodb.sdau.edu.cn/gc/index.html	€ 🚽 🛛 🐓 🗙 👂 百度	۶
文件(E) 编辑(E	〕 查看(፶) 收藏夹(Δ) 工具(I) "│× 《新转换 ▼ 18选择		
🖕 收藏夹 👘 🍰	🔊 OIV 🗋 ScholarOne Manu 🧰 Home 🧇 Bank of America 🎇 FAOSTAT 🕎 invotrogen Q328 易 网易免费邮箱 🖉 🕅	页快讯库▼	
🏉 grape-crispr		🏠 • 🗟 · □ 🖶 • 页面(P) • 安全(S) • 工具((0) 🕶 🔞 🕶
	Grape-Crispr Home Search Design About		
	Grape-Crispr		
	Grapes are a type of fruit that grow in clusters of 15 to 300, and can be crimson, black, dark blue, yellow, green, orange and pink. Most grapes come from cultivars of Vitis vinifera, the European grapevine native to the Mediterranean and Central Asia.Commercially cultivated grapes can usually be classified as either table or wine grapes, based on their intended method of consumption: eaten raw (table grapes) or used to make method of consumption.		
	used to make wine (wine grapes). While almost all of them belong to the same species, Vitis vinifera, table and wine grapes have significant differences, brought about through selective breeding. Table grape cultivars tend to have large, seedless fruit (see below) with relatively thin skin. Wine grapes are smaller, usually seeded, and have relatively thick skins.		

OK/s

Grape-crispr is a database provides the Crispr/Cas9 spacers to the researchers. it contains more than 30 million spacers and all these spacers have been assessed to make it effective and user-friendly.

Please cite the Grapr-Crispr

Welcome, You are the 1 times visit this database!

http://biodb.sdau.edu.cn/gc/index.html

PLANT-CRISPR (Desktop software)

76 Cripsr Detect		
INPUT SEQUENCE	INPUT OUTPUT FILE PAM Length GC(0.3-0.7) OK	OUTPUT
74 Electronic Cripsr	I	
INPUT GENOME	INPUT OUTPUT FILE PAM SPACER MISS MATCHES HIGH FIELD OK	OUTPUT

Current work

CRISPR/Cas9-mediated genome editing

- Grape berry development and trait Sugar content; tartaric acid; aroma
- Plants with increased biotic resistance cold and freeze tolerance; drought tolerance

CRISPR/Cpf1-mediated genome editing

Acknowledgement

Shaohua Li, Institute of Botany, Chinese Academy of Sciences Peige Fan, Institute of Botany, Chinese Academy of Sciences Yi Wang, Institute of Botany, Chinese Academy of Sciences Cuixia Liu, Institute of Botany, Chinese Academy of Sciences Chong Ren, Institute of Botany, Chinese Academy of Sciences Fengrui Ren, Institute of Botany, Chinese Academy of Sciences Meilong Xu, Institute of Botany, Chinese Academy of Sciences Zhanwu Dai, Institute of Botany, Chinese Academy of Sciences Serge Delrot, University of Bordeaux, ISVV, INRA David Lecourieux, University of Bordeaux, ISVV, INRA Fatma Lecourieux, University of Bordeaux, ISVV, INRA Jianfu Jiang, Zhengzhou Fruits Research Institute, Chinese Agriculture Academy of Sciences Perte Nick, Karlsruhe Institute of Technology

