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Multiple changes and challenges

Reduce pesticides Adapt to climate change

ref. T◦ in 1970 pred. T◦ in 2055 pred. T◦ in 2085

ARPEGE model

Major questions to biologists:

1. how to phenotype the eco-physiological processes of interest?

2. what are their genetic architectures?

3. how to incorporate them into breeding programs?
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Diversity panel of Vitis vinifera L. from Domaine de Vassal

Beside bi-parental populations ⇒ 279 cultivars (weak structure)

Nicolas et al. (2016)
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Field layout at Domaine du Chapitre

2009: overgraft on
Marselan (control)

I 5 complete
randomized blocks

I each genotype has 1
replicate per block

c© 2009 AND, Tele Atlas, Google
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Intense phenotyping e�ort

2010-2012

I Traits: mean berry weight; mean bunch weight, length and
compactness; pruning weight and number of woody shoots;
malate, tartrate, shikimate; δ13C

I Additional covariates: vigour, sanitary status

I No irrigation

2014-2015

I Traits: mean berry weight; δ13C; β-damascenone and pDMS;
polyphenols (Pinasseau et al., 2017)

I Treatment: with or without irrigation

⇒ Focus on mean berry weight (2010-2012)
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Mean berry weight: exploratory analysis of phenotypes

Control genotype (Marselan) per block and year
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Mean berry weight: exploratory analysis of phenotypes

Panel per block and year
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Mean berry weight: exploratory analysis of phenotypes

Missing data in 2011
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Dual genotyping

I GrapeReSeq microarray (Illumina): 12k SNPs after QC

I GBS with ApeKI enzyme (Keygene): 120k SNPs after QC

I Combined: 90k SNPs with LD < 0.9 and MAF > 0.01

11k SNPs 90k SNPs

⇒ Densi�cation required to tag all/most causal polymorphisms
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Kinship matrix from SNPs (additive genetic relationships)
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Statistical analysis of phenotypic data

y = Xβ + Zg + ε with g ∼ N (0, σ2g Id); ε ∼ N (0, σ2 Id)

I y : phenotypic observations

I β: e�ects of known factors, modeled as "�xed"

I g : total genotypic values, modeled as "random"

I ε: errors

I H2 =
σ2g

σ2g+(σ2/#rep)
: broad-sense heritability (of means)

y = Xβ + Za + ε′ with a ∼ N (0, σ2a A); ε ∼ N (0, σ′2 Id)

I A: kinship matrix of additive genetic relationships

I a: additive genotypic values (a.k.a. breeding values)

I h2 = σ2a
σ2g+(σ2/#rep)

: narrow-sense heritability (of means)

Flutre et al. GWAS of grapevine 9 / 17



Statistical analysis of phenotypic data

y = Xβ + Zg + ε with g ∼ N (0, σ2g Id); ε ∼ N (0, σ2 Id)

I y : phenotypic observations

I β: e�ects of known factors, modeled as "�xed"

I g : total genotypic values, modeled as "random"

I ε: errors

I H2 =
σ2g

σ2g+(σ2/#rep)
: broad-sense heritability (of means)

y = Xβ + Za + ε′ with a ∼ N (0, σ2a A); ε ∼ N (0, σ′2 Id)

I A: kinship matrix of additive genetic relationships

I a: additive genotypic values (a.k.a. breeding values)

I h2 = σ2a
σ2g+(σ2/#rep)

: narrow-sense heritability (of means)

Flutre et al. GWAS of grapevine 9 / 17



Estimation of heritabilities

H2: higher, better → g well approximated by its BLUP

h2: higher, better → σ2a large enough for selection purposes
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Statistical analysis of genotypic values

SNP-by-SNP: ad hoc

BLUP(g) = 1µ + mp βp + u + ε

I βp: e�ect of the pth SNP → test if βp = 0

I u: polygenic e�ect with kinship matrix K ∝ MMT

Multi-SNP: explicit modelling of the genetic architecture

BLUP(g) = 1µ+Mβ + ε

I fully polygenic: all βp 6= 0

I major QTLs only: few βp 6= 0 and all others = 0

I hybrid: all βp 6= 0 and few β̃p 6= 0
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Estimation of hybrid genetic architectures

PVE: proportion of variance of total genotypic values explained by
the polygenic component and the major QTL e�ects

I higher → better to predict genotyping values

PGE: proportion of PVE explained only by major QTL e�ects

I higher → better to identify candidate genes

trait #SNPs med(#QTLs)
mbw 11k 31 [0,169]
mbw 90k 14 [2,115]

I importance of
genotyping densi�cation

I large amount of genetic
variance from polygenic
component
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Mean berry weight: SNP-by-SNP versus multi-SNP

SNP-by-SNP with 11k SNPs

⇒ genotyping not dense enough
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Mean berry weight: SNP-by-SNP versus multi-SNP

SNP-by-SNP with 90k SNPs

⇒ dense enough to �nd two signi�cant SNPs
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Mean berry weight: SNP-by-SNP versus multi-SNP

Multi-SNP (major QTLs only) with 90k SNPs

⇒ more power to �nd six SNPs tagging putative QTLs
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Mean berry weight: SNP-by-SNP versus multi-SNP

Focus on the selected SNPs

I P̂VE = 0.668 [ 0.613, 0.735 ]

I need to de�ne QTLs around selected SNPs
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Mean berry weight: selected SNPs

SNP #1 at ≈ 6.3 Mb on chr17 (overlap known QTLs)

̂Pr(βp 6= 0) = 1 ; P̂VEp = 0.094 ; β̂p = −0.213 ; CI95% = [−0.263,−0.163]
location: coding of Vitvi17g00537, (-)-isopiperitenol/(-)-carveol dehydrogenase, mitochondrial
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Mean berry weight: selected SNPs

SNP #2 at ≈ 29.9 Mb on chr14

̂Pr(βp 6= 0) = 0.999 ; P̂VEp = 0.074 ; β̂p = −0.159 ; CI95% = [−0.202,−0.117]
location: promoter of Vitvi14g02008, uncharacterized
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Prospects with the panel

Phenotyping:

I improved phenotyping of berry physiology (poster 49);
tolerance to pathogens (poster 57)

I phenotyping in multiple sites and greenhouses to study GxE

Genotyping:

I capture-based sequencing of GBS-de�ned SNPs

I search for traces of selection

Modeling:

I genomic prediction to speed-up selection (poster 82)

I multi-pop/-trait statistical analysis (ongoing work)
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Take-home message

With dense genotyping and multi-SNP models,
the diversity panel of V. vinifera L.

from INRA Montpellier
allows estimating the genetic architecture of

numerous traits of interest,
to help design e�cient breeding strategies.

I diversity panel: virus-free and available

I data and reproducible analyzes: available upon publication

I contact: Agnès Doligez (agnes.doligez@inra.fr)
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