

Genetic analysis of grapevine secondary metabolism using non-targeted metabolomics

Thuy-Thanh TRUONG – INRA Grand Est Colmar – France

Secondary metabolism is a major contributor to wine quality

- Color
- Structure
- Aroma

Which genes are involved in grape aroma biosynthesis?

Riesling (RI)

- Fruity
- Mineral

Gewurztraminer (GW)

- Floral
- Spicy
- Exotic fruits

383 progenies in a vineyard of 7000 m² since 2006

X

Genetic data

RI map: 953 SNP

GW Map: 806 SNP

Consensus map: 157 SSR

→ 1916 genetic markers

High resolution metabolic phenotyping

Ultra Hight Pressure Liquid Chromatography –
High Resolution Mass Spectroscopy
(UHPLC-HRMS)

RI x GW population

UHPLC-HRMS
Orbitrap

Metabolic Quantitative Trait Loci (mQTL) analysis

Untargeted analytic data of grape berries and leaves

RI x GW population

mQTL 🔀

Genes involved?

Genetic data (SSR,SNP)

Identification of candidate genes

Physical position: annotated genes on PN40024

Identification of candidate genes

Physical position: annotated genes on PN40024

A successful approach (IIc et al., 2017)

A grapevine cytochrome P450 generates the precursor of wine lactone, a key odorant in wine

Tina Ilc¹, David Halter², Laurence Miesch³, Florian Lauvoisard³, Lucie Kriegshauser¹, Andrea Ilg², Raymonde Baltenweck², Philippe Hugueney², Danièle Werck-Reichhart¹, Eric Duchêne² and Nicolas Navrot¹

¹Institute of Plant Molecular Biology, Centre National de la Recherche Scientifique, University of Strasbourg, 12 Rue du Général Zimmer, Strasbourg Cedex 67084, France; ²Unité Mixte de Recherche 1131, Institut National de la Recherche Agronomique, University of Strasbourg, 28 Rue de Herrlisheim – BP 20507, Colmar Cedex 68021, France; ³Laboratoire de Chimie Organique Synthétique, Centre National de la Recherche Scientifique, University of Strasbourg, 1 Rue Blaise Pascal, Strasbourg Cedex 67008, France

Thousands of mQTL distributed all over the genome

A QTL on chr1 for the content of a norisoprenoid glucoside

Segregation

Amount of norisoprenoid glucoside (arbitrary units)

$$H_3$$
C CH_3 OH OH OH OH

A QTL on chr1 for the content of a norisoprenoid glucoside

A QTL on chr2 for vanillin content

Segregation

Amount of vanillin (arbitrary units)

A QTL on chr2 for vanillin content

Explained variance: 17%

Identification of candidate genes

Physical location of the QTL on PN40024

RI and GW have different CAMT protein isoforms

Activities under characterization

Conclusion and perspectives

- Thousands of QTL: candidate genes related to aroma under investigation
- High impact QTL for wine aroma?
- → QTL validation through winemaking

Use of genetic markers linked to aromatic characteristics for grapevine breeding

Acknowledgements

Grapevine Secondary Metabolism Grapevine Genetics Teams

Philippe HUGUENEY
Supervisor

Éric DUCHÊNE Co-supervisor

Raymonde BALTENWECK
Sophie BLANC
Gisele BUTTERLIN
Patricia CLAUDEL
David HALTER
Nathalie JAEGLI
Lauriane RENAULT
Camille RUSTENHOLZ
Amandine VELT

