

Contrasting susceptibilities to Flavescence dorée in wild Vitis species, Vitis vinifera cultivars and progenies suggest segregation of genetic traits involved in disease response

<u>S. Eveillard</u>, C. Jollard, F. Labroussaa, D. Khalil, M. Perrin, D. Desqué, P. Salar, F. Razan, C. Hévin, L. Bordenave, X. Foissac, J. E. Masson, S. Malembic-Maher

Grapevine Flavescence dorée (FD)

Grapevine susceptibility to Flavescence dorée (FD) in vineyards

Difference in susceptibility to FD is well described in vineyards

- percentage of infected stocks
- symptom severity
- recovery

Susceptibility/ recovery	Vitis vinifera	Symptom severity	Rootstocks (<i>Vitis sp.</i> hybrids)
Less susceptible/ good recovery	Cot, Merlot, Syrah	No symptom	5BB , 41B , 161.49C, 5C
Susceptible/ recovery	Cabernet Franc, Carignan, Cinsault, Colombard, Gamay, Mourverdre, Muscat, Pinot Noir	Low index	101.14MG, 125AA, SO4, 110R, 140Ru
Highly susceptible	Alicante bouschet, Aramont, Baco 22A, Carbernet Sauvignon, Chardonnay, Grenache B, Grenache N, Sauvignon B, Ugni B	Both indexes	3309C, Fercal, 420 A

Boudon-Padieu 1996

Are these differences observed in vineyards related to phytoplasma titers?

Grapevine susceptibility to FD in vineyards

Two V. vinifera cultivars emblematic of Bordeaux

Cabernet Sauvignon susceptibility +++

Merlot susceptibility +

Comparison of the susceptibility to FD of Cabernet Sauvignon (CS) and Merlot (M) in vineyard

3 vineyard plots from Bordeaux area with CS and M growing side by side and with a FD outbreak

Comparison of the susceptibility to FD of Cabernet Sauvignon (CS) and Merlot (M) in vineyard

Innovative protocol of controlled FD transmission by *S. titanus* in confined greenhouse allowed the characterization of the response to FD in *Vitis*

24–32-week protocol

A-C: hatching of *S*. *titanus* from grapevine canes collected in the vineyard, 6–8 weeks.

D: FDp acquisition by L3–L5 *S. titanus* larvae on FDp-infected broad bean, 1 week.

E: latency period on grapevine, 3–4 weeks.

F-G: acclimatisation of grapevine *in vitro* plantlets, 8 weeks.H: FDp transmission to grape plants by infectious *S. titanus*, 1 week.

I: incubation of plants, 5–10 weeks, until sampling for FDp quantification and symptoms evaluation.

Comparison of the susceptibility to FD of Cabernet Sauvignon (CS) and Merlot (M) in greenhouse

Time course : determination of FDp titers in M and CS

weeks post insect-mediated-FDp transmission

In greenhouse, FDp titers were lower for M (resembling data obtained in vineyards)

Comparison of the susceptibility to FD of Cabernet Sauvignon (CS) and Merlot (M) in greenhouse

Diffusion: inoculation on one leaf

- All CS sections were infected
- in M only the section including the leaf that received the infectious *S. titanus* was positive with low mean FDp titers

Diffusion of FDp is limited to the site of infection in M

Eveillard et al., 2016

Comparison of the susceptibility to FD of Cabernet Sauvignon (CS) and Merlot (M) in greenhouse

Response results from plant-insect or FDp-plant interactions?

- In vitro grafting of a scion of Chardonnay (Ch) on CS and M
- Insect were put exclusively on scion
- All CS rootstocks were infected with high FDp titers, M remained FDp free or occasionnaly with a very low FDp titer

M resistance to FD can be explained by a plant-FDp specific response

Eveillard et al., 2016

Experimental infections of different cultivars with FD

Plant inoculation with FD-infected *S. titanus*

Size of vines: 20-30 cm

9 cultivars (Vitis vinifera)

7 hybrid rootstocks

12 Vitis sp. from America and Asia (Wild Vitis)

- Cabernet
 Sauvignon as
 control
- Symptoms evaluation
- Phytoplasma quantification (QPCR)

Responses to FD infection in a collection of Vitis

Collection of 28 Vitis was phenotyped

- organized in 3 categories:
 - high FDp titers and high proportion of infected plants (red)
 - intermediate FDp titers and high proportion of infected plants (black)
 - intermediate to low FDp titers and low proportion of infected plants (green)

Proportion of infected plants relative to CS

Responses to FD infection in a collection of Vitis

- **Rootstocks** : symptomless with intermediate to high FDp titers: warning, silent reservoir
- Vitis vinifera in the 3 categories and correspond to the field observations
- No Wild Vitis showed any resistance to FD

Experimental infections of different cultivars with FD

 Parents of M and CS are Magdeleine Noire des Charentes (Mag), Cabernet Franc (CF) and Sauvignon (Sau) have different susceptibility to FDp

Experimental infections of different cultivars with FD

Distribution of different genetic traits within the Vitis genus involved either in

- insect-mediated phytoplasma transmission,
- multiplication,
- circulation,
- symptom development.

-> cross

V. vinifera

Rootstocks

Wild Vitis

Cross between M's parents: Mag and CF

- Crosses were made in Bordeaux, Montpellier and Cognac
- Embryo rescue allowed to obtain seedlings from seeds in only 30 days

T8

30 days from seeds to seedlings with the embryo rescue (M. Perrin and J. Masson, INRA Colmar)

Phenotyping of M's brothers for FDp susceptibility

- Preliminary data after progeny phenotyping show
 - Progeny is distributed in the 3 groups, highly susceptible, poorly susceptible and intermediate
 - Identification of genotypes with resistance equivalent to Mag or M.

This suggests a segregation in the genetic traits concerning FDp resistance and a quantitative determinism

- Next:

- Phenotyping of CFxMag progeny (maternal heredity)
- Phenotyping of MagxMag progeny

- In the long-term:

- Increase our phenotyping capacity (by doing less repetition)

Thank to

- All the authors
- My colleagues from the mollicutes team
- The conservatoire du vignoble charentais for providing the cultivar Magdeleine Noire des Charentes
- Conseil Interprofessionnel du Vin de Bordeaux, France Agrimer, the regional council of Aquitaine and INRA which funded this research

Thank you for your attention