

Study of the molecular dialogue between grapevine inflorescence/berry and *Botrytis cinerea* during the initial, quiescent, and infection stages

Z. Mehari, G. Malacarne, S. Pilati, P. Sonego, K. Engelen, V. Lionetti, D. Bellincampi, U. Vrhovsek, M. Zottini, E. Baraldi, C. Moser

GBG 2018 - Bordeaux

Claudio Moser Fondazione Edmund Mach

Botrytis cinerea is one of the major grapevine pathogens: it causes bunch rot.

MACH

Introduction

Control strategies

- Agronomical practices: leaf removal in the cluster zone, shoot topping to obtain looser clusters or better wind and sun exposure
- GA treatment: to obtain less compact bunches
- Fungicides: applied at 3-4 different phenological stages (midbloom, at bunch closure, vèraison, 2 w after vèraison)
- New interspecific varieties: (e.g. Carminoir, Galotta, IASMA Eco 1,2,3,4) or transgenic lines (e.g. chitinase overexp.)

Introduction

1. PRIMARY INFECTION AT FLOWERING STAGE

2. GREEN BERRIES: QUIESCENCE

3. RIPE BERRIES: EGRESSION

Objective

To understand the interactions between grapevine inflorescence and B. cinerea during <u>initial infection</u>, quiescence, and egression stages

This knowledge can improve control strategies

Material and Methods

- Flowers raised from fruiting cuttings (cv. Pinot Noir)

- *B. cinerea* B05.10 strain (WT & GFP labelled)

- 1. Macroscopic and microscopic analysis (B05.10-GFP)
- 2. Dual Transciptome analysis (RNA-seq)
- 3. Targeted secondary metabolite analysis (mainly phenols)

Macroscopic analysis

No visible symptoms of infection or fungal growth within the first 2 wpi

Microscopic confocal analysis

24 hpi

Z stack images with a pass of 1 μm each

Conidia germination and penetration of the first epidermal layers

96 hpi

Results

Botrytis is still present but in a quiescent state: no growth progress

Transcriptome analysis

Summary of reads mapping of the 15 RNA-seq libraries

	Library	Total quality- trimmed reads	Reads mapped to V. vinifera reference	Reads uniquely mapped to <i>V. vinifera</i> reference	Reads mapped to <i>B. cinerea</i> reference	Reads uniquely mapped to <i>B. cinerea</i> reference
CTRL 24hpi	Ctrl 1-24	33,582,861	26,185,827 (77.97%)	24,938,558 (74.26%)	60,629 (0.18%)	9,736 (0.03%)
	Ctrl 2-24	30,634,590	24,156,916 (78.86%)	23,009,237 (75.11%)	63,570 (0.21%)	10,476 (0.03%)
	Ctrl 3-24	28,509,351	21,919,491 (76.89%)	20,541,510 (72.05%)	301,999 (1.06%)	26,834 (0.09%)
CTRL 96hpi	Ctrl 1-96	22,410,851	16,848,719 (75.18%)	15,496,486 (69.15%)	472,766 (2.11%)	7,195 (0.03%)
	Ctrl 2-96	37,394,962	24,336,710 (65.08%)	23,155,616 (61.92%)	60,179 (0.16%)	7,598 (0.02%)
	Ctrl 3-96	27,843,357	21,949,631 (78.83%)	20,838,437 (74.84%)	92,550 (0.33%)	11,458 (0.04%)
Bc-inf 24hpi	Trt 1-24	27,812,146	19,069,689 (68.57%)	16,282,036 (58.54%)	1,281,100 (4.6%)	35,213 (0.12%)
	Trt 2-24	31,644,086	25,622,237 (80.97%)	24,469,696 (77.33%)	134,816 (0.43%)	72,414 (0.23%)
	Trt 3-24	30,211,586	24,631,219 (81.53%)	23,391,950 (77.43%)	164,851 (0.55%)	77,040 (0.26%)
Bc-inf 96hpi	Trt 1-96	25,919,449	21,240,182 (81.95%)	20,270,161 (78.20%)	77,351 (0.34%)	16,453 (0.06%)
	Trt 2-96	26,077,701	20,388,725 (78.18%)	19,359,716 (74.24%)	116,774 (0.45%)	54,139 (0.21%)
	Trt 3-96	23,503,720	18,957,227 (80.66%)	18,077,115 (76.91%)	79,818 (0.34%)	28,891 (0.12%)
Bc-PDB	Bc 1	22,223,388	76,740 (0.35%)	21,423 (0.01%)	20,072,229 (90.32%)	14,108,503 (63.48%)
	Bc 2	21,289,297	47,738 (0.22%)	28,559 (0.13%)	19,256,732 (90.45%)	16,603,159 (77.99%)
	Bc 3	22,254,222	50,719 (0.23%)	17,798 (0.08%)	20,086,452 (90.25%)	16,522,732 (74.24%)

Between 59 and 75 % map to the *V. vinifera* reference genome Only up to 0.26 % map to the *B. cinerea* genome

Results

In Vitis

Transcriptome analysis

Grapevine DEGs (absolute fold-change > 1.5 and a *p*-value < 0.05)

- At 24 hpi, Botrytis treated vs. untreated samples are separated
- At 96 hpi samples seem very similar at a whole transcriptome level

In Bc

Results

Bc genes expressed *in planta* => 1325 genes (at least 10 reads, on average)

 Fungal RNA in the samples is limited: i) 300 conidia per flower ii) arrest in fungal growth after penetration.

Botrytis transcripts expressed in planta

				Average no. of raw reads from		
				RN	ysis	
				In planta expressed		PDB
	Abbreviation	Transcript description	Gene ID	24hpi	96hpi	culture
	BcSOD1	Superoxide dismutase1	Bcin03g03390	76	26	9411ª
	BcGOX1	Galactose oxidase	Bcin13g05710	21		609
Redox	BcAOX Alcohol oxidase Bcin		Bcin07g03040	24		490
I COON	BcGST1	Glutathione S-transferase	Bcin10g00740			2655ª
	BcPRD1	Dyp-type peroxidase	Bcin13g05720	19		312
	BcGPX3	Glutathione peroxidase	Bcin03g01480	23		2871ª
	BcLCC2	Laccase2	Bcin14g02510	15		32 ^b
	BcCUTA	Cutinase	Bcin15g03080	15		54 ^b
	BcCUT-like1	Cutinase	Bcin01g09430	68	11	9 ^b
	BcOAH	Oxaloacetate acetylhydrolase	Bcin12g01020	386		38 ^b
	BcPG1	Polygalacturonase1	Bcin14g00850	209	175	147821ª
CWDE	BcPG2	Polygalacturonase2	Bcin14g00610			362
CVVDE	BcPG4	Polygalacturonase4	Bcin03g01680	44		47 ^b
	BcPG6	Polygalacturonase6	Bcin02g05860	75		62
	BcPEL-like1	Pectate lyase	Bcin03g05820	87	24	40 ^b
	BcGAR2	D-galacturonic acid reductase2	Bcin03g01500	37		104
	BcLGD1	D-galactonate dehydrogenase	Bcin01g09450	61	10	804
	BcGLA1	2-keto-3-deoxy-L-galactonate aldolas	Bcin03g01490	70	13	66
	BcXYN11A	Endo-beta-1,4-xylanase	Bcin03g00480	18		129
	$Bc\beta GLUC$	Beta-glucosidase 1 precursor	Bcin10g05590	32		75
	BcAP8	Aspartic proteinase8	Bcin12g02040	30	12	1064ª
	BcAP9	Aspartic proteinase9	Bcin12g00180	16		569
	BcBOT1	Botrydial biosynthesis1	Bcin12g06380	58		86
Phytotoxins	BcBOT2	Botrydial biosynthesis2	Bcin12g06390	41		55
	BcBOA6	Botcinic acid6	Bcin01g00060	13		1048ª

B.c. is ready to infect and cause disease

Vitis defense response

Results

- Redox:
 GST & ROS
- Membrane-localized receptor like kinases:
 - CLV1, WAK1, & BAK1
- Phytohormones
- Transcription factors:
 WRKY & MYB
- Secondary metabolism
- PRs and Proteases
- Chitinases
- Glucanases
- Thaumatin
- Lipases
- PR10, PR1

Large transcriptional reprogramming toward defense at 24hpi > at 96hpi

ROS accumulated at the site of penetration

Cytoplasmic HyPer grapevine transgenic line

Infection triggers cell wall reinforcement

Autofluorescence (cell wall apposition)

Fold change concentration of the metabolites of the monolignol biosynthesis pathway

Fold change (log2) -2 -1 0 1 2 12 hpi 24 hpi 48 hpi 72 hpi 96 hpi

Polyphenol secondary metabolism

Several polyphenols involved in grapevine defense are induced together with some key biosynthetic genes.

Macroscopic analysis

Very low signal of *B. cinerea* in hard green 4 wpi berries, still some specific genes are expressed.

Few hundred (ca. 600 genes) Vitis genes are modulated (most upregulated), several in common with 12hpi

Results (berry)

In summary:

Upon recognizing *Botrytis*, the flower within 24 hpi upregulates PR-proteins, monolignol precursors, stilbenoids, and reactive oxygen species, together with cell wall reinforcement.

=> forces *B. cinerea* into quiescence (still basal specific activity)

Original Article

Molecular analysis of the early interaction between the grapevine flower and *Botrytis cinerea* reveals that prompt activation of specific host pathways leads to fungus quiescence

Zeraye Mehari Haile^{1,6}, Stefania Pilati¹, Paolo Sonego², Giulia Malacarne¹, Urska Vrhovsek³, Kristof Engelen², Paul Tudzynski⁴, Michela Zottini⁵, Elena Baraldi⁶ & Claudio Moser¹

Acknowledgements

FEM Haile Zeraye Mehari Stefania Pilati Giulia Malacarne Kristof Engelen Paolo Sonego Urska Vrhovesk

University of Bologna Elena Baraldi University of Padova Michela Zottini Westfälische Wilhelms-Universität Münster Paul Tudzynski Ulrike Siegmund

Thank you!

Transcriptome analysis

Summary of reads mapping of the 15 (+3) RNA-seq libraries

Library	Total quality- trimmed reads	Reads mapped to V. vinifera reference	Reads uniquely mapped to V. vinifera reference	Reads mapped to B. cinerea reference	Reads uniquely mapped to B. cinerea reference
HG_Ctrl1	18,764,162	17,226,186 (91.80 %)	16,552,848 (88.22 %)	46,268 (0.25 %)	520 (0.01 %)
HG_Ctrl2	18,245,810	13,462,443 (73.78 %)	10,041,596 (55.04 %)	1,675,246 (9.18 %)	1,786 (0.00 %)
HG_Ctrl3	20,330,170	17,125,573 (84.24 %)	16,376,294 (80.55 %)	68,337 (0.34 %)	545 (0.00 %)
HG_Trt1	23,828,415	21,594,466 (90.62 %)	20,837,836 (87.45 %)	45,065 (0.19 %)	6,958 (0.03 %)
HG_Trt2	21,976,001	19,853,734 (90.34 %)	19,120,028 (87.00 %)	56,664 (0.26 %)	16,928 (0.08 %)
HG_Trt3	21,146,332	18,828,955 (89.04 %)	18,070,467 (85.45 %)	75,234 (0.35 %)	24,680 (0.12 %)
Ripe_Ctrl1	24,635,902	22,048,745 (89.50 %)	21,007,364 (85.27 %)	37,989 (0.15 %)	818 (0.00 %)
Ripe_Ctrl2	26,843,805	24,151,620 (89.97 %)	23,069,555 (85.94 %)	27,883 (0.10 %)	836 (0.00 %)
Ripe_Ctrl3	29,860,937	26,527,044 (88.84 %)	25,136,297 (84.18 %)	169,478 (0.57 %)	885 (0.00 %)
Ripe_Eg1	21,296,699	3,254,793 (15.28 %)	2,756,774 (12.94 %)	16,664,468 (78.25 %)	14,235,574 (66.84 %)
Ripe_Eg2	22,578,478	5,287,093 (23.42 %)	4,550,569 (20.15 %)	14,815,131 (65.62 %)	12,490,580 (55.32 %)
Ripe_Eg3	28,787,397	12,703,484 (44.13 %)	11,577,654 (40.22 %)	12,750,536 (44.29 %)	10,718,882 (37.23 %)
Ripe_Peg1	45,369,750	32,808,151 (72.31 %)	27,381,446 (60.35 %)	2,547,394 (5.61 %)	22,842 (0.05 %)
Ripe_Peg2	55,880,939	45,269,916 (81.01 %)	42,976,225 (76.91 %)	2,315,554 (4.14 %)	1,698,079 (3.04 %)
Ripe_Peg3	47,239,407	40,062,424 (84.81 %)	38,243,440 (80.96 %)	118,269 (0.25 %)	23,815 (0.05 %)
Bc1	22,223,388	76,740 (0.35 %)	21,423 (0.01 %)	20,072,229 (90.32 %)	14,108,503 (63.48 %)
Bc2	21,289,297	47,738 (0.22 %)	28,559 (0.13 %)	19,256,732 (90.45 %)	16,603,159 (77.99 %)
Bc3	22,254,222	50,719 (0.23 %)	17,798 (0.08 %)	20,086,452 (90.25 %)	16,522,732 (74.24 %)

Very low signal of *B. cinerea* in hard green and pre-egressed samples

Results (berry)

Transcriptome analysis

Vitis DEGs (|FC |> 2 and P-value < 0.01)

Vitis:

С

- Few hundred genes are modulated in the quiescent stage
- A larger transcriptome rearrangement is observed at Peg and Egression stages.

B. cinerea:

• in Eg. samples very different from PDB culture.

B. c. transcriptome at egression stage

Egression

Results (berry)

86 % of total *B. cinerea* transcriptome is expressed
3,548 genes are differentially regulated (compared to PDB cultured *B. cinerea*)

Biological functions:

- Carbohydrate-active enzymes and others involved in plant cell wall degradation
- Virulence and/or growth related genes

Utmost metabolic activity in the egressed *B. cinerea,* already starting at Peg stage.

Vitis defense response

Results (berry)

Results (berry)

Conclusions

The conjugated actions of induced defense responses in flowers and hard-green berries seem to be responsible for *B. cinerea* quiescence.

At ripening, the fungus exploits the ripening associated physico-chemical changes and recovers an active metabolism and pathogenic activity to cause bunch rot.

SUMMARY PAPER 2: During the quiescent state, the expressed fungal

transcriptome highlighted that the fungus was undergoing basal metabolic activities besides remodeling its cell wall to evade plant chitinases. Berries responded by differentially regulating genes encoding for different PR proteins and genes involved in monolignol, flavonoid and stilbenoid biosynthesis pathways. At 12 wpi, the transcripts of B. cinerea in the preegressed samples showed that virulence-related genes were expressed, suggesting infection process was initiated. The egressed B. cinerea expressed almost all virulence and growth related genes that enabled the pathogen to colonize the berries. In response to egression, ripe berries reprogrammed different defense responses, though futile. Our results indicated that hard-green berries defense program was capable to contain B. cinerea; however, ripening associated fruit's cell wall self-disassembly together with high humidity created the opportunity for the fungus to egress and cause bunch rots