FLORIDA & UNIVERSITY

The First Version of the Whole-Genome Sequencing of the Muscadine Grape (*Muscadinia rotundifolia* cv. Noble) PRESENTED BY

Islam El Sharkawy

Florida Agricultural and Mechanical University

Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences

Tallahassee, Florida.

Our Muscadine Breeding Program

- Currently muscadine grapes is commercially grown in 12 states in the US.
- There is a demand for new muscadine cultivars with enhanced fruit/vinification qualities.
- Over the years, conventional breeding strategy has resulted in several muscadine cultivars suitable for table and wine markets with improved quality traits.
- However, the procedure is lengthy, laborious and expensive, which does not match with the rapid, ever-increasing industry needs.
- Our goal is capitalizing on the latest achievements of genomic technologies to develop breeding platform that meets the growing industry demands.

Grapevine Cultivars & Germplasm at CVSFR

Background	Total No. of Vines	No. of Individual Genotypes	No. of Cultivars	Adult ^a	Juvenile ^b
Muscadinia hybrids	3925	2537	51	664	1877
<i>Vitis</i> hybrids	3380	2432	172	589	1843
Muscadinia x Vitis (MV)	106	106	-	103	3
a) 3-year old and /or elder; Reproductive Phase.					
b) 2-year old and or younger; Growth Phase.					

Grape

Muscadinia Genus (3)

M. rotundifolia M. munsoniana M. popenoei

Euvitis Genus (14)

V. vinifera V. labrusca V. riparia V. aestivalis V. rupestris

40 chromosomes (n=20)

38 chromosomes (n=19)

Morphological Differences:

Leaves, flower type, tendrils, cluster size, berry size, and age of cutting for propagation.

Muscadinia sp. hold particular agronomical and reproductive traits:

- Resistance to most of diseases that limit the worldwide production of V. vinifera.
- Adapted to poor soil.
- Grow well under warm and humid conditions.
- Exotic fruit quality traits (berry size, unique flavor spectrum, therapeutic phytochemicals content).
- Unique vinification qualities.

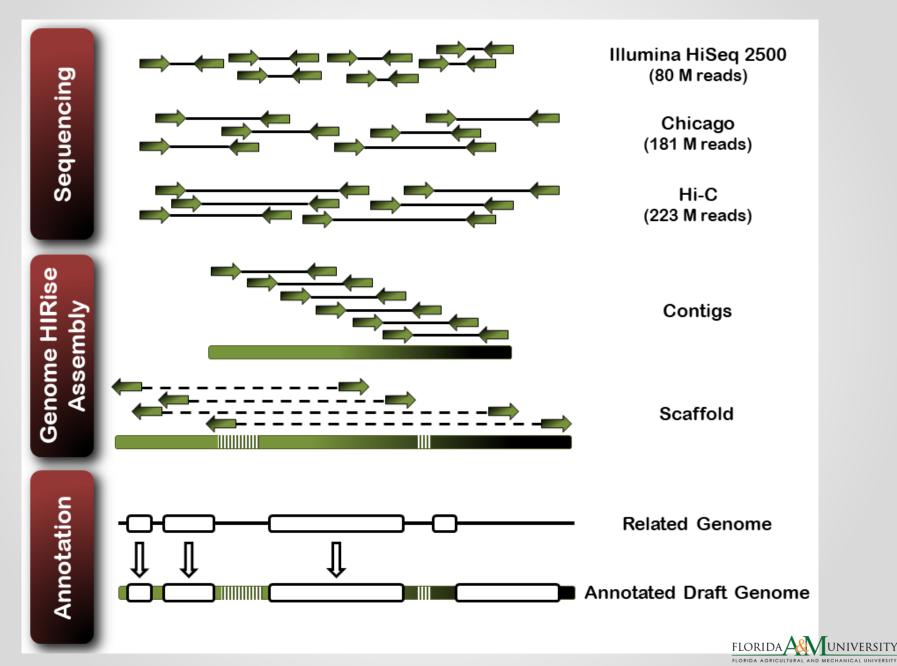
Muscadines have obviously different challenges from those of traditional 'vinifera' grapes

- Cold hardiness.
- Extended ripening season.
- Perfect flower with large berry size.
- Fruit quality traits (diversity in berry color & shape, seedlessness, large cluster, thinner skin, dry stem scar, uniform ripening, extended shelf-life).

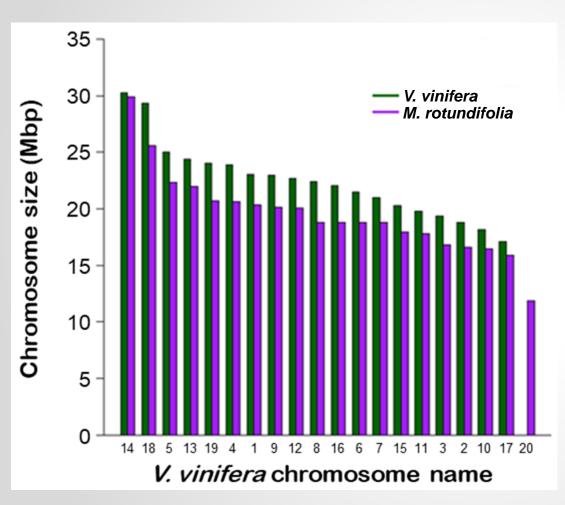
Mais

Whole – Genome Sequencing of Muscadine Grape Noble cv.

Main red wine muscadine cultivar released by Nesbitt, 1973.


Thomas (♀) x Tarheel (♂)

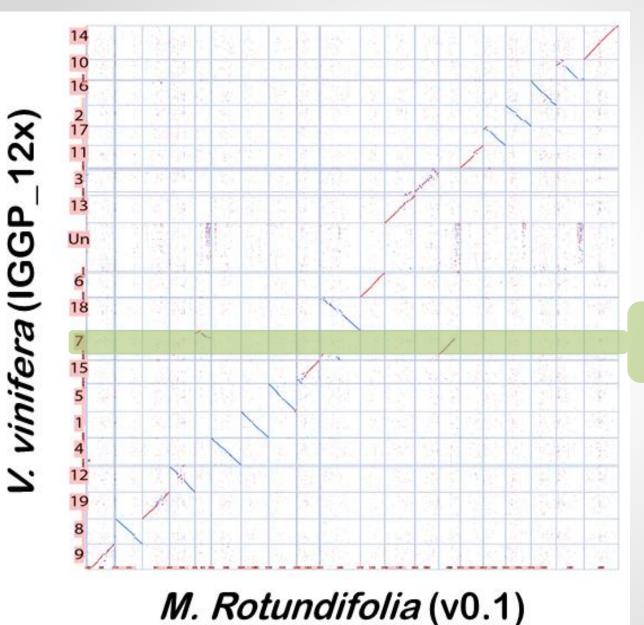
- High vigor growth.
- Disease resistant.
- Self-fertile (perfect flower).
- Midseason.
- Uniform ripening.


- ✤ Black small berries (3.8 4.3 g).
- High yield (9.6 10.7 tone/acre).
- Stable purple pigments.
- Suitable for wine and juice production.

Muscadine Genome Sequencing & Assembly

Muscadine Genome Assembly Statistics

Estimated genome size	414 Mb (82%)	
Assembly Size	400.26 Mb (96.6%)	
Contig N50	107 kb	
Contig L50	1,011 contigs	
Scaffold N50	20.045 Mb	
Scaffold L50	9	
Scaffold N90	16.486 Mb	
Scaffold L90	18	
Number of scaffolds	1,629	
Heterozygosity	1.47%	
Unplaced sequence	2.47%	
Contig gaps	8,168	



<u>Benchmarking Universal Single-Copy Ortholog</u> (BUSCO)

- Assessment of muscadine genome assembly and gene set using BUSCOs indicates highly-complete representation of protein-coding genes.
- Statistics searching Embryophyta BUSCOs:
- 1382 Complete BUSCOs (96%).
 - 1339 Complete and single-copy BUSCOs (93%).
 - ♦ 43 Complete and duplicated BUSCOs (3%).
- 17 Fragmented BUSCOs (1.2%).
- 41 Missing BUSCOs (2.8%).
- 1440 Total BUSCO groups searched.

M. rotundifolia and V. vinifera display high colinearity

The extra *Muscadinia* chromosome is composed of two large segments homologous to *Vitis* chromosome 7

Characterization of muscadine population

A population of 400 muscadine genotypes (50 standard cultivars and 350 lines) has been carefully selected to ensure diversity and subjected to:

1. Phenomic Characterization

- Fertility traits (bud fertility, bud fertility coefficient, position of first fruiting bud);
- Cluster physical traits (intensity, size, weight, number and weight of berries/cluster);
- Berry physical traits (scar pattern, color, size, weight, number and weight of seeds/berry, firmness);
- 50 berries traits (berries weight, pomace weight, juice volume);
- Yield traits (No. of clusters/vine, yield/vine); and
- Berry quality traits (TSS, acidity, pH).

Characterization of muscadine population

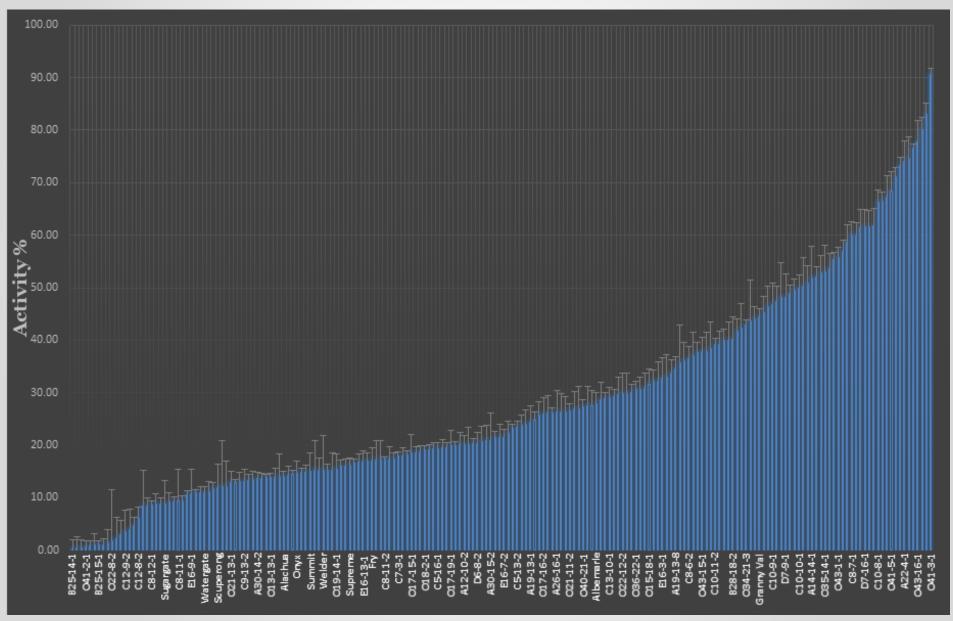
2. Phenology traits

- Bud break.
- Green shoot visible.
- Visible inflorescences.
- Partial bloom.
- Full bloom.

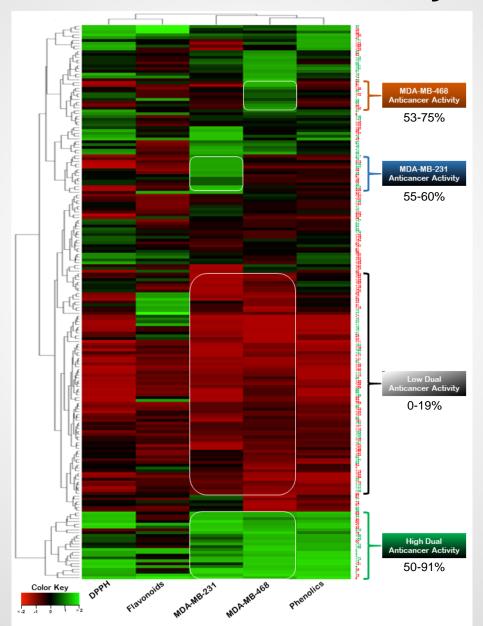
- Fruit-set.
- Cluster closure.
- Veraison.
- Post-Veraison.
- Ripening.

3. Biotic stress traits

- Leaf roll virus (several strains); and
- Fungal diseases (powdery and downy mildew).


Characterization of muscadine population

4. Metabolomic and sensorial traits


- Aroma volatile esters production.
- Total phenolic.
- Total flavonoid.
- Antioxidant activity.
- Antimicrobial activity (*E. coli*).
- Anticancer activity (Breast cancer cell lines MDA-MB-231 and MDA-MB-468).

Anticancer activity of muscadine extracts using African American breast cancer cell lines

Classification of muscadine genotypes based on their anticancer activity

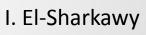
Undergoing

- Generating Pacbio Iso-seq and Illumina RNA-seq data on multiple tissues to generate accurate and comprehensive gene predictions.
- Performing ATAC-seq (Assay for Transposase-Accessible Chromatin using sequencing) to determine the chromatin accessibility of muscadine genome.
- Analyzing of *M. rotundifolia* genes' PAV (presence-absence variation) and their predicted functions compared to *V. vinifera*.
- Complete QC analysis and submission to Phytozome.

Acknowledgement

United States Department of Agriculture National Institute of Food and Agriculture

Team Members


D. Vera

D. Kambiranda

V. Tsolova

